Constructing Detectors in Schema Complementary Space for Anomaly Detection
نویسندگان
چکیده
This paper proposes an extended negative selection algorithm for anomaly detection. Unlike previously proposed negative selection algorithms which directly construct detectors in the complementary space of self-data space, our approach first evolves a number of common schemata through coevolutionary genetic algorithm in self-data space, and then constructs detectors in the complementary space of the schemata. These common schemata characterize selfdata space and thus guide the generation of detection rules. By converting data space into schema space, we can efficiently generate an appropriate number of detectors with diversity for anomaly detection. The approach is tested for its effectiveness through experiment with the published data set iris.
منابع مشابه
Markov Chains, Classifiers, and Intrusion Detection
This paper presents a statistical anomaly detection algorithm based on Markov chains. Our algorithm can be directly applied for intrusion detection by discovering anomalous activities. Our framework for constructing anomaly detectors is very general and can be used by other researchers for constructing Markov-chain-based anomaly detectors. We also present performance metrics for evaluating the ...
متن کاملPerformance Evaluation of Anomaly-Based Detection Mechanisms
Common practice in anomaly-based intrusion detection is that one size fits all: a single anomaly detector should detect all anomalies. Compensation for any performance shortcomings is sometimes effected by resorting to correlation techniques, which could be seen as making use of detector diversity. Such diversity is intuitively based on the assumption that detector coverage is different – perha...
متن کاملImproving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT
Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004